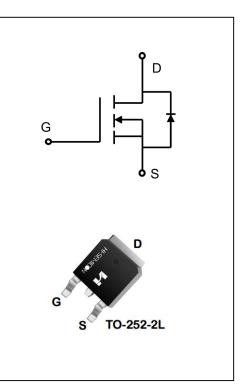
<u>HI-SEMICON</u>

SFD4N60TS


4A, 600V N-CHANNEL POWER MOSFET

GENERAL DESCRIPTION

These N-Channel enhancement mode power field effect transistors are produced using Hi-semicon's proprietary, planar stripe, VDMOS technology.

Features

- ♦V_{DS}(V)=600V, I_D=4A
- ♦ R_{DS(on)} TYP:2.4Ω@V_{GS}=10V I_D=2A MAX:2.8Ω

ORDERING INFORMATION

Part No.	Package	Marking	Material	Packing
SFD4N60TS	TO-252-2L	SFD4N60TS	Pb free	Reel

ABSOLUTE MAXIMUM RATINGS (TJ=25°C unless otherwise noted)

Characteristics		Symbol	Ratings	Unit
Drain-Source Voltage		V _{DS}	600	V
Gate-Source Voltage		V _{GS}	±30	V
	T _C = 25°C		4.0	
Drain Current	T _C = 100°C	I _D	2.8	A
Drain Current Pulsed (Note 1)		I _{DM}	16	А
Power Dissipation(T _c =25°C)		PD	56	w
-Derate above 25°C			0.45	W/∘C
Single Pulsed Avalanche Energy (Note 2)		E _{AS}	237	mJ
Operation Junction Temperature Range		TJ	-55~+150	°C
Storage Temperature Range		T _{stg}	-55~+150	°C
Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds		TL	300	°C

THERMAL CHARACTERISTICS

		Unit
Rejc	2.23	°C/W
R _{0JA}	98	°C/W
Ĺ		

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Off Characteristics					1	
Drain -Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250µA	600			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =600V, V _{GS} =0V			100	nA
Gate-Source Leakage Current	Igss	V _{GS} =30V, V _{DS} =0V			100	nA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA
On Characteristics						
Gate Threshold Voltage	V _{GS(th)}	V _{GS} = V _{DS} , I _D =250µA	2.0	3.0	4.0	V
Static Drain- Source On State				2.4	2.0	
Resistance	R _{DS(on)}	V _{GS} =10V, I _D =2.0A		2.4	2.8	Ω
Dynamic Characteristics						
Gate Resistance	Rg	V _{GS} =0V; f=1.0MHZ		4.2		Ω
Input Capacitance	Ciss	V _{DS} =25V		616		
Output Capacitance	Coss	V _{GS} =0V		26		pF
Reverse Transfer Capacitance	Crss	f=1.0MHZ		5.1		
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}	V _{DD} =300V R _G =25Ω		14.8		
Turn-on Rise Time	tr	I _D =4A (Note 3.4)		26.4		ns

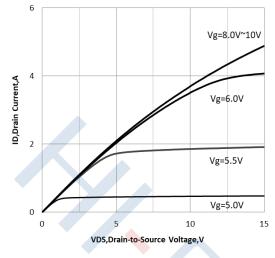
SFD4N60TS

Turn-off Delay Time	$t_{d(off)}$	V _{DD} =300V R _G =25Ω	 36.4	
Turn-off Fall Time	t _f	I _D =4A (Note 3.4)	 41.3	 ns
Total Gate Charge	Qg	V _{DS} =480V, I _D =4A	 13.2	
Gate-Source Charge	Q_{gs}	V _{GS} =10V	 3.8	 nc
Gate-Drain Charge	Q_{gd}	(Note 3.4)	 4.95	

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	ls	Integral Reverse P-N			4	
Pulsed Source Current	Іѕм	Junction Diode in the MOSFET			16	А
Diode Forward Voltage	V _{SD}	I _S =4A,V _{GS} =0V		1.0	1.4	V
Reverse Recovery Time	Trr	I _F =4A,V _R =300V,		32.8		ns
Reverse Recovery Charge	Qrr	dIF/dt=100A/µS		36.2		nC

1.Pluse width limited by maximum junction temperature


2.L=10mH, Ias=8.0A, Vdd=100V, Vg=10V, Rg=25 Ω , starting TJ=25°C

3.Pulse Test: Pulse width ≤300µs, Duty cycle≤2%

4.Essentially independent of operating temperature

HI-SEMICON

Typical Performance Characteristics

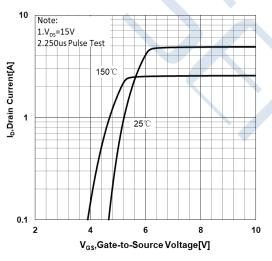


Figure.3 Typical Transfer Characteristics

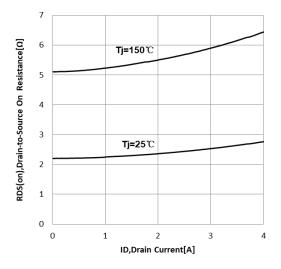


Figure.5 Typical Drain to Source ON Resistance vs Drain Current

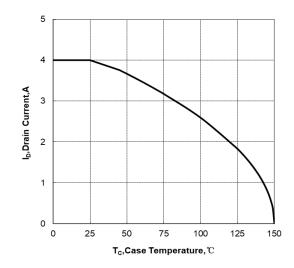
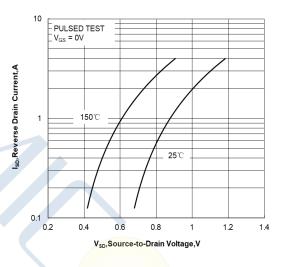
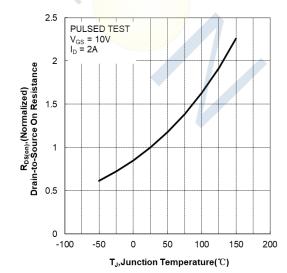
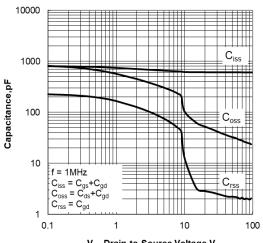
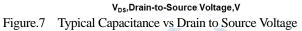
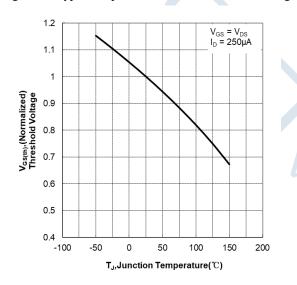
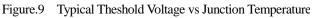



Figure.2 Maximum Continuous Drain Current vs Case Temperature


Figure.6 Typical Drian to Source on Resistance vs Junction Temperature


SFD4N60TS


HI-SEMICON

Typical Performance Characteristics

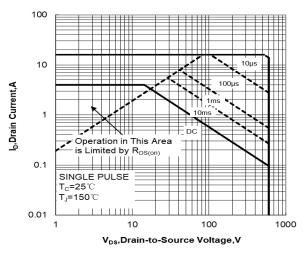
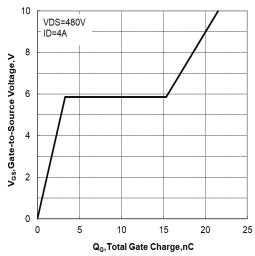
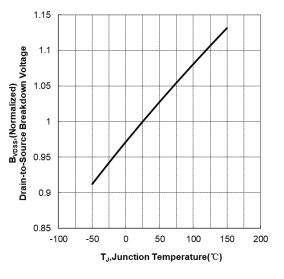
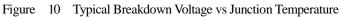
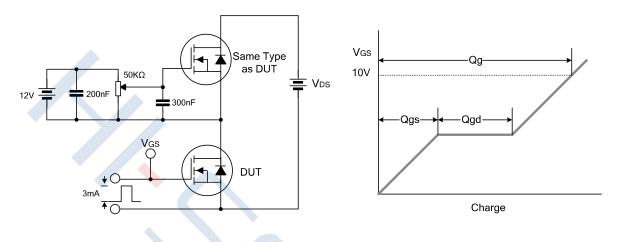
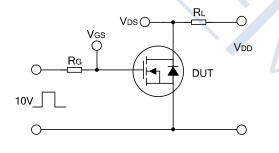
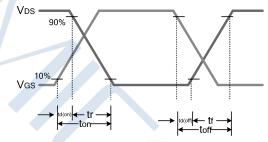


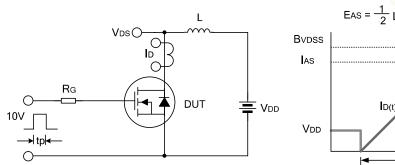
Figure.11 Maximum Forward Bias Safe Operating Area

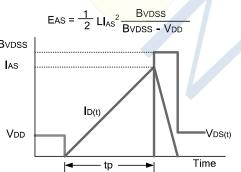




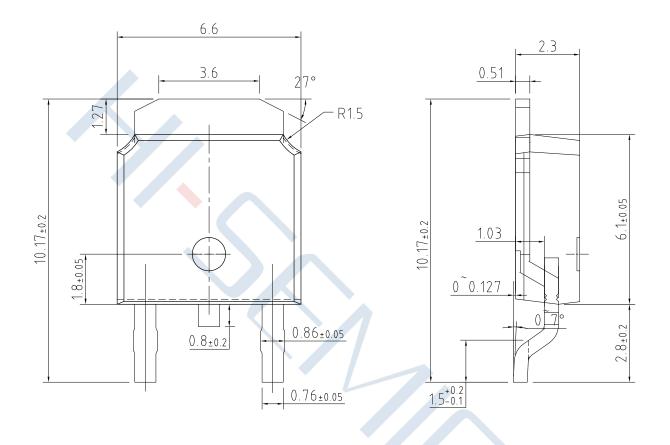

Figure.8 Typical Gate Charge vs Gate to Source Voltage


<u>HI-SEMICON</u>


Test Circuit


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveform


Unclamped Inductive Switching Test Circuit & Waveform

HI-SEMICON

Package Dimensions of TO-252-2L

<u> HI-SEMICON</u>

Disclaimer:

► Hi-semicon reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.

► All semiconductor products malfunction or fail with some probability under special conditions. When using Hisemicon products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Hi-semicon products could cause loss of body injury or damage to property.

Hi-semicon will supply the best possible product for customers!

Http://www.hi-semicon.com